Modelling Conflict: Knowledge Extraction using Bayesian Neural Network and Neuro-fuzzy Models
نویسندگان
چکیده
Much has been written about the lack of transparency of computational intelligence models. This paper investigates the level of transparency of the Takagi-Sugeno neuro-fuzzy model and the Neural Network model by applying them to conflict management, an application which is concerned with causal interpretations of results. The neural network model is trained using the Bayesian framework. It is found that the neural network is able to forecast conflict with an accuracy of 77.30%. Knowledge from the neural network model is then extracted using the Automatic Relevance Determination method and by performing a sensitivity analyis. The Takagi-Sugeno Neuro-fuzzy model is optimised to forecast conflict giving an accuracy 80.36%. Knowledge from the Takagi-Sugeno neuro-fuzzy model is extracted by interpreting the model’s fuzzy rules and their outcomes. It is found that both models offer some transparency which helps in understanding conflict management.
منابع مشابه
Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملFuzzy logic and neuro-fuzzy modelling of diesel spray penetration: A comparative study
The aim of this study was to demonstrate the effectiveness of an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of diesel spray penetration length in the cylinder of a diesel internal combustion engine. The technique involved extraction of necessary representative features from a collection of raw image data. A comparative evaluation of two fuzzy-derived techniques for modelli...
متن کاملThe use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملThe Use of Fuzzy, Neural Network, and Adaptive Neuro-Fuzzy Inference System (ANFIS) to Rank Financial Information Transparency
Ranking of a company's financial information is one of the most important tools for identifying strengths and weaknesses and identifying opportunities and threats outside the company. In this study, it is attempted to examine the financial statements of companies to rank and explain the transparency of financial information of 198 companies during 2009-2017 using artificial intelligence and neu...
متن کامل